Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

A Natural attenuation of arsenic in drainage from an abandoned arsenic mine dump

Fukushi, Keisuke*; Sasaki, Miwa*; Sato, Tsutomu*; Yanase, Nobuyuki; Amano, Hikaru; Ikeda, Hodaka*

Applied Geochemistry, 18(8), p.1267 - 1278, 2003/08

 Times Cited Count:220 Percentile:95.91(Geochemistry & Geophysics)

At Nishinomaki abandoned mine district, the water is acidic and contains much amounts of arsenic. However, arsenic concentration decreases downward without any artificial treatment. To understand the mechanism of the natural attenuation, the acid mine drainage and the ochreous precipitates were collected. The samples were analyzed by XRD, IR, ICP-MS and ion-chromatograph. The precipitates were investigated by selective extraction procedure. These results were interpreted with those calculated by the geochemical code. The contamination of water has been result from oxidation of pyrite and realgar and subsequent release of iron. The released ferrous iron transforms to ferric form by bacterial oxidation and then schwertmannite forms immediately. While the arsenic concentrations in the stream are lowered to background level at downstream, these in the ochreous precipitates are up to 60 mg/g. The iron hydroxide has been known to exhibit the high sorption affinity to arsenate. Hence, arsenic is effectively removed by the schwertmannite from the contaminated water and attenuated naturally.

Oral presentation

Remediation mechanisms of uranium mill-tailing site at Ningyo-toge, Japan, under the circumneutral condition

Kawamoto, Keisuke*; Ochiai, Asumi*; Takeda, Ayaka*; Nakano, Yuriko*; Yokoo, Hiroki*; Oki, Takumi*; Onuki, Toshihiko*; Ohara, Yoshiyuki; Fukuyama, Kenjin; Utsunomiya, Satoshi*

no journal, , 

In the Ningyo-toge uranium mine, Okayama, Japan, various toxic elements such as U, As, and Ra are present in the mine wastewaters, of which the concentration except for Ra in the wastewater decrease below the regulatory limit by transport to the slag dumping pond. The mechanisms of decreasing their concentrations in the wastewaters are not fully understood. In order to understand the fundamental processes of natural attenuation at this site, we have investigated the wastewaters and solids from upstream to the pond at the downstream. Wastewater was contacted with oxygenated water and the amount of dissolved oxygen increased. Simultaneously dissolved ferrous iron was oxidized to form ferrihydrite nanoparticles, which are associated with silica colloids, As and U. The ferrihydrite nanoparticles as suspended colloids were transported to the pond in downstream, where the waste stream is completely oxidized. In the slag dumping pond, Mn dioxide, birnessite, dominantly occurs forming a mixture with ferrihydrite + silica colloid, which has a potential to adsorb Ra$$^{2+}$$. Consequently, Fe hydroxides nanoparticles and Mn dioxides in Ningyo-toge play a key role on removing U, As and Ra from the wastewater.

Oral presentation

Elucidation of natural purification mechanism of mine water at Ningyo-toge uranium mine

Yokoo, Hiroki*; Kawamoto, Keisuke*; Oki, Takumi*; Uehara, Motoki*; Onuki, Toshihiko*; Ohara, Yoshiyuki; Fukuyama, Kenjin; Hochella, M. F. Jr.*

no journal, , 

no abstracts in English

3 (Records 1-3 displayed on this page)
  • 1